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On a class of a linear functional equations

By LASZLO SZEKELYHIDI (Debrecen)

1. Introduction. In this paper we deal with a class of Jinear functional equa-
tions on some types of Abelian groups. Our aim is firstly, to find the general solu-
tion of these equations, and secondly, to find the solutions satisfying some regularity
conditions if the groups in question are topological.

In the first part we give the general solution of some functional equations by
means of polynomials on groups. The notion of polynomial on a group has been
introduced by S. MAZUR, W. OrLIcZ {8], M. FRECHET [3] and G. VAN per LN [11].
The role played by these functions is similar to that played by polynomials on the
real line. In pariicular we determine the general form of polynomials on groups
by means of multiadditive functions generalizing the results of M. A. MCKIERNAN [9].

In the second part we determine the regular solutions in case of topological
groups by showing that the usual regularity conditions imply continuity. In partic-
ular we extend some well-known theorems ([6], [7], [10]). The interest of the method
used in this work is that the statements about regularity are derived from the explicit
general solution rather than from the equation.

Equations of similar type have been dealt with in [4] and 6] too.

2. Notations and terminology. Throughout this paper R will denote the set of
reals, C the set of complex numberss. If G is a group, the group operation will be
denoted by “+” even if G is not commutative. A group is said to be torsion-free
if it does not contain any element of finite order except zero. If x is an element of a
group and 7 is a positive integer, then nx denotes the sum x+x+...+x (n times),
and if » is a negative integer, then nx=—(—n)x. A group is said to be divisible,
if for every element x of it there exists an element y with ny=x. if a commutative
group is divisible and torsion-free then it is a linear space over the rationals.

If G, S are (not necessarily commutative) groups and f* G—S is a function,
then for every y€G let

T,f(x) = fix+y) (x€G),

and for every y, Vs, .-, Yo€G let
A"y.,) =(T,,—T)(T,

17y

In particular for y€G

—To)- ATy, —To).

n=-1

a = (T,— Ty
A function f: G—3S is said to be a polynomial of degree at most n, if
A3 f(xy =0

2.
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for every x, y€G. It is said to be a monomial of degree n, if

A3 f(x) = nlf(y)

for every x, yEG. Itis obvious that every monomial of degree at most » is a poly-
‘nomial of degree at most . :

If G, S are groups and n is a positive integer, then a function A: G"—+ S is
said to be n-additive, if it is a homomorphism in each variable. Tt is said to be sym-
metric, if it takes the same value at every permutation of its variables. Let A: G°— S8
be a function, then the function @ defined by

p(x) = A(x, x, ..., X) (x€G)
is said to be the diagonal of A, and is denoted by D(A). Further let

A, ¥) =A(ch, X %0 0 e ¥) (x, YEG)

We use the phrase “0-additive function” for constant functions.
If f is a function, then Rgf denotes the range of f.

3. Algebraical results

Theorem 3.1. Let G, S be Abelian groups and let S be torsion-free. Let n be a
positive integer and y,=nl(n—-11..21 If f: G—=S is an arbitrary polynomial of
degree n, then v, f can be written as the sum of monomials of degree at most n.

The proof can be found in f11].

Theorem 3.2. Let G, S be Abelian groups and let n be a positive integer.
If p: G—~S isa monomial of degree n, then there exists an n-additive symmetric
function A: G"—~S such that D(A)=n'le. Further D(A) is a monomial of degree
n for an arbitrary n-additive symmetric function A.

ProOOF. Let for yi, ..., P4€G
v = A @(0).
A1y o ) (v,...-,m‘p(o)

Then A is symmetric and for Y1, ¥1, V2> - y.£G we get
Ay, + ¥, Yoo oo Y — A Y2 oo V)AL Yas oo V) =
—( & - A~ A o=

T My Frreeentn)  Froees¥o) s eer ¥)

= (Tyl‘f'?l - T.Vx - Tf] + TO) I_}; (Tyi - TO)QO(O) =

= T TY(@,~ T [[ (T, ~Te©® = 474 00 =0
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80 A is n-additive. Further

DAY = B0 0) = nlo(y) (yeG).
The other statement is trivial.

Corollary 3.3. Let G, S be Abelian groups and let S be torsion-free. Let n be
a positive integer and v, as in Theorem 3L If f: G~S isa polynomial of degree

at most n then there exist Ai: G*~ S k-additive Symmetric functions (k=0, 1, ey 1)
such that

n
Vaef = kZ D(4,).
=a
This representation is unigue.

PROOF. We have to prove the uniqueness only. For the prooflet 3 D(4,)=0,
k=0

where 4, is a k-additive symmetric function (k=0,1, .., n) then for every
Xy Vs -y VoEG we have

0=, 4 (Z0) 0= & payw = nia ..y

and so 4,(y, ..., y,}=0. Similarly we get A, =0Fforylk=0,1, ..., n—1.

Lemma 3.4. Let G, S be Abelian groups, let n be a positive integer, let A, : G~ §

be k-additive symmetric Sunctions (k=0, 1, ..., n) andlet f: G—~S be g monomial
of degree n. Then

) 2 D(4)=0 implies 4,=0 (k=0, 1, ey 1)
k=0 .
) fo@ is a monomial of degree n for every homomorphism ¢: G-G.

PROOF. For the proof of 1) see the previous theorem and the proof of the other
statement is an easy calculation

’

Definition 3.5, Let G, S be Abelian groups, let # be a nonnegative integer.
The function f: G-+S is said to be of degree », if there exist functions f1G-S

and homomorphisms ©i, ¥ G~G such that Rgp,cRgy, (i=1,2, e 1)
and the equation

W S+ 3 A0+ 0) = 0 (xyea)
holds,

Theorem 3.6. Let G, S be Abelign groups and suppose that G is divisible. et
n be a nonnegative integer. The function @ G—S is of degree n if and only if it is a
polynomial of degree n,

PROOF. ¥(x)=ix (i=1,2, ..., n+1) is a homomorphism of ¢ and Rg =G,
hence every polynomial of degree n is a function of degree n. For the converse we
have to prove only the following statement: if the function fis of degree #n then

w1

4,f is of degrce n—1t for every 1€G, this implies that ¥ )f is identically

Cpreenat gy
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zer0, i€, fis a polynomial of degree n. Let #£€G be an arbitrary element and s€G
such that ¢@,,,(£)+,,(5)=0. Substituting in (1) x+¢ for x and y+s for p.
and subtracting (1) from the new equation we obtain

(2) 4, f(x)+ 2 Hloi()+4d,00] = 0,

i=1@ (‘)'Hf‘ (=)
this shows that A4,f is of degree n—1.

Theorem 3.7. Let G, S be Abelian groups such that S is torsion-free and let n
be a nonnegative integer. Let @up;: G—G be homomorphisms (i=1,2,...,n+2)
and let AY: G*« § be k-additive symmetric functions (k=0,1, ..., mi=1,2, ... .n+2).
The functions

Si= IDUP) (i=1,2..,n+2)
k=0

salisfy the functional equation

3) lﬁfﬁ[%(xﬂkb.(y)] —0 (x, yEG)

if and only if the functions AL satisfy the relations

@ 3 AG 00N =0 (. 3€6)

fgr j:O, 1,....n and kzj,j‘l't, EREP {4

PrOOF. Let the given functions satisfy equation (3), then using the obvious
relation

k
D(A)(x+y) = ,-220 [f) Ai(x, y) (x, y€G)

which holds for every k-additive symmetric function 4, we get
k
5 1 k ( ]Agji(q’x(x); W; (y)) 0 (x, yeG).
i=

Observe that the function x—A{(¢,(x), ¥:(»)) is a monomial of degree j
for every y¢G, and so (5) and theorcm 3.3 imply

._1 k_ [k] AP (), ¥:(»)) =0 (j=0,....,n,x, yG).

Similarly we get

(6) A“’ o) wi(p) =0 (x, y€G)

for j=0,...,n, k=j, ..., n because S is torsion-free. To prove the converse multiply

(6) by [};] and add the equations first for &=/, j+1, ..., #, then for j=0,1....,#
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Corollary 3.8. Let G, S be linear spaces over the rationals, let n be a positive
integer, let p;, q; (i=1,2,...,n+2) be rational numbers and let AP: G*—§
(k=0,...,n; i=1,2, ...,n+2) be k-additive symmetric functions. The functions

n
fi= DAY i=1,2,..,n+2
k=0

satisfy the equation
n42

(N :g; filpix+qy) =0 (x, y€G)

if and only if the functions A" satisfy the relations

n+2 )
(8) 2 Pl DA (X)) =0 (x€G)
i=1
for j=0,1,....,n and k=j,j+1, ..., n. (Here 0=}
Proor. If G, S are linear spaces over the rationals, then

AJ-(PX, Q'J’) = ijk_JAj(x= y)

holds for every k-additive symmetric function A and rationals p, g. By the previous
theorem we have to show only that (8) implies the equations

n+2
_21 A(pix, q:¥) =0 (x, y€G)
for j=0,1,...,n; k=j,j+1,..,n Let 0=j=n and j=k=n be arbitrary. Then
by (8) we get
n+2z k k nt+2 R i
0= 3 platID(AP)(x+)) = z[s)z plat=d AP, ).
Hence for s=0,1, ...,k

n+2 N .
2 plgt AR ) =0 (x, y€0).

In particular, for s=; we obtain

ity
> ARi(pix, ;) =0 (x, y€G).

Theorem 3.9. Ler G, S be Abelian groups and suppose that G is divisible and §
is torsion-free. Let n be a nonnegative integer and let ¢;, y;: G—+G be homomorphisms
of G onto itself such that Rg (Yo —p;007 =G for i=j(i,j=1,2, ...,n+1).
The functions f;: G—S (i=0, ..., n+ 1) satisfy the functional equation

©) fb(x)+§;lﬁ[fp;(x)+¢.~(y)] —0 (x, y€G)
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if and only if there exist AP: G*—~S k-additive symmetric functions
(k=0,1,..,n,i=0,1,..,n+1)

such that
n
(10) fi= ZID(A®) (=01, ...,n+1)
k=0
and the equations
n+i .
(1n A0x, 0)+ ;; A9, vi(1) =0 (x, y<G)

hold for j=0,1,...,n, k=j, j+1, ..., n

Proor. Let the functions f; satisfy (9} and let 0=i=n-+1 be arbitrary. Further
let u, y¢G be arbitrary and x=¢7 (@) —o7 oy, ().
Then by (9) we have

0 =fiw)+folo W) —oito tll,-(y))+;§ff}[fp; 0@ W)+ (¥ — @007 o) (¥)).

J=i

Here Rg ¢;'=G=Rg ¢; oy, and

Rgp;o07' =G =Rg(;0¥; ' —@ 00"} = Rg(¥;—9;00; ' oy
so by 3.3 and 3.6 every f; has the form (10). Conversely by (11) we get

n+l
.;' Ag}j((l),(x), tpl()})) =0 (} = 03 cen 7 k ::le ey X, .VE (;)

and by 3.7 the proof is complete. (Here @q{x)=x, ¥(x)=0 for x€G.)

Corollary 3.10. Let G, S be linear spaces over the rationals. Let n be a non-
negative integer and let p;,q; be rationals different from zero such that p,q;#p;q;
for i#j (i,j=1,2,...,n+1). Then the general solution of the functional equation

(12) )+ 3 St a) =0 @ y<6)
has the form

filx) = é‘D(A,?’) (i=01,.,0n+1)

where the functions Af: G*—~S are k-additive symmetric ones (k =0,1,...,n,
i=0,1,..,n+1) for which the relations

(13) DUSYD+ > EDALYX) =0 (€Gj=1,.n—1,k=j+1, .. n)
i=1

n+1l
(14) > pigF DA (x) =0 (x€G,j=1,..,n—1, k=j+1,..,n)
i=1

LED]

a5 3 #DUAPIx) =0 (xEG k=0, ..., m)
i=1

hold.
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Proor. By 3.9 it is sufficient to show that with the notations
ox)=px, v(x)=gx (i=1,..,n+1, x€G)

(11) 1s equivalent with (13), (14} and (15). If we write in (11) j=4k, then we get
(13), and with j=0 and arbitrary & we obtain (15) from (11). Now let 1=j<k=n
and x, y€G be arbitrary, then from (14) we have

nbl o . . (kY& . L
0= 3 plgt-niae) = 3 ()3 plat-t 4 )
= =0\ i3

and hence for s=0,1, ..., &
n+1

2 plat 7 AR(x, ) =0
=1

and in particutar for s=;j we have

n+1 )
2 A (pixtagy) =0 (x, y€G)

which completes the proof.

4. Tapological results

Lemma 4.1. Let G be an arbitrary group, let n be a positive integer and A: G"—>R

be an n-additive symmetric function. If ki, ks, ..., k, are positive integers, then there
¢

exists a positive integer N such that for every x{", x§, .., xP¢G (i=1,2, ..., n)
the relation

[AGE 4+ 46D, P+ x)] = N Max (4G, X, o X
holds.

The proof is a simple calculation.

Theorem 4.2. Let G be a topological group, let n be a positive integer and let
Ag: G*~R be k-additive symmetric functions for k=1,2, .., n. If 2"’ D(4,) is
continuous then A, is continuous for k=1,2, ..., n. =

PROOF. Let C} denote the set of all combinations of &-th class of the set

follows:
Piin, iy F1s oo X0) = X+ X (X, s X)EG

Observe that for f= 2"' D(A,) we have
k=1

(17) A, = ;],“ 2"? > =D Ffopa, L

T E=Y (. 0)EC]
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If / is continuous, then so is A4, by (17). Then f—D(A,) is continuous and by (17)
A,_, is continuous too. Continuing similarly we get our statement.

Theorem 4.3. Let G be a tepological group, let n be a positive integer and let
A, G*—R be k-additive symmetric functions for k=0,1,..,n Let G, denote

"
the component of the identity in G. If > D(A,) is continuous at the identity then
k=0
A, is continuous on G§ (k=0,1,2, ..., n).

PROOF. We know by (17) that A4, is continuous at (0,0, ...,0). It is sufficient
to show that any n-additive symmetric function 4: G"—~R which is continuous at
(0,0, ..., 0), is continuous on Gj. First we show that for arbitrary y,, ¥z, ..., Ya€Gy
the function x—A(X, ¥s, ..., y,) is continuous on G,. Let &¢=0 be given and let
W,, W,, ... W, be neighbourhoods of the identity in G such that for every
(X1, oo X)EW X .. X W, we have [A(x;, o, xM<eg It is known that in G every
neighbourhood of the identity generates G,. Let 24", Z80, ., €W, such that
204, 420 =y, (i=2,...,n) and let N be the same positive integer as in 4.1. Let
UcW, be a neighbourhood of the identity in G such that for x, Xs, ..., xy€U
we have x,+...+xyEW,. Then A€U implies N-h€W and we have

LA, Yo oo )l = [ACR 2P+ 42D, 2+ 2 =
= N.Max|d(h, 22, ..., zf")| = Max |A(Nh, B, Lz =e.

We can prove similarly that for every |<k<n the function

(xl’ At xk) - A(xl's -'-sxk" yk) srsy yn)
is continuous at (0,0, ...,0), whenever y;,€0, (j=k+1, .., n). Now let e=0
12 K

~—

be arbitrary (x;, ..., JZ,)Q G" and let U be a neighborhood of the identity in G such
that if h€U and x,=h for some i then 'A(x,, ..., x,)|=¢. If W=UX...XU,
and (4, ..., i, W, then

(ACe 4By oo Xyt )= Ay, ooy X ) < Cog
where the constant C depends on # only. This completes the proof.

Theorem 4.4. Let G be a locally compact group, let n be a positive integer and let
A,: GE~R be k-additive symmetric functions for k=0,1,2,...,n. Let G, denote

the component of the identity in G. If 2 D(Ay) is bounded in some neighbourhood
k=
of the identity, then A, is continuous on Gt (k=0,1,2, ....n).

ProoF. By (17) A, is bounded in some neighbourhood W of (0.0, ..., 0) that
is (X1, ..., X,)€ W implies
[ A Xy oens X = KL

Let & be a neighbourhood of the identity for which UX...X Uc W and suppose
that D(A,) is not continuous at the identity. Then there exists an g=0 such that
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every neighbourhood of the identity contains an element z satisfying the inequality
ID(A)(2) = &
n I'f
Let m>—V? be a natural aumber and VU be a neighbourhood of the
identity such that z€V implies mz€ U. Choose an element z€V with the property
1D(4,)(z)!=e. Then mzg U, (mz, mz, ..., mz)e W and
14,(mz, ....m2)| = m| DA = K
which is a contradiction. Thus by 4.3 the proof is complete.

Lemma 4.5. Let G be a locally compact group, KCG be a compact set and let
; denote the right Haar-measure. Then the function

(X1, v-os Xp) — K —x)0V e (K —x,)]
is continuous on G" for every positive integer f. (See [5], [6].)

Theorem 4.6 Let G be a locally compact group, let n be a positive integer and
let A: G*—R be k-additive symmetric functions for k=0,1,.., 1 Let G, denote

the component of the identity in G. If 3 D(Ay) is bounded or measurable on some
k=0

measurable subset of G, of positive measure, then A, is continuous on Gk
(k=0,1,...,n).

Proor. The second statement is a consequence of the first one. For if
n
f= 2 D(4,) and f is measurable on some measurable set with positive measure,
k=0

then it is measurable on some compact set of positive measure. By Lusin’s theorem
(see e.g. [2]) the restriction of / on some compact set of positive measure is continu-
ous, and so it is bounded on this compact set. Now let fbe bounded on some meas-
urable set of positive measure, then it is bounded on some compact set K, with
+K=0. The function x— A[KO(K—x)N ... ((K—nx)] is continuous on G by
Jemma 4.5, and its value at the identity is positive. Thus we can choose a neigh-
bourhood U of the identity such that A[Kﬁ(K—x)ﬂ...ﬂ(K—nx)] =0 for x€U.
Then there exists a y¢ KO(K—x)N...N(K—nx) ie. yeK yeK—x, .., y+nxEK.
Observe that

D(A)(x) = 7117 % fQy) = —nl—, ,2"0 [',2] (== f(p k)

which implies the boundedness of D(4,) on U. Then by 4.4 A, is continuous on
-1 n

G2 and by repeating this argument for 3 D(4,) instead of > D(4,) the proof
k=0 k=0

is complete.
Jt is easy to see that the resulis of this paragraph remain valid if the ranges
of the functions in question are in some linear topological space.
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