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Abstract. The classical result about characterizing polynomial ideals in
several variables by differential operators is the Ehrenpreis–Palamodov theorem.
There are further results exhibiting a constructive method for finding the corre-
sponding differential operators, the so-called Noetherian operators. Here we show
the connection between this problem with discrete spectral synthesis and present
a new method for constructing Noetherian operators for polynomial ideals.

1. Spectral synthesis on semigroups

The basic ideas of discrete spectral analysis and spectral synthesis

can be formulated and investigated on commutative semigroups. Let S

be a commutative semigroup written additively. The set of all complex

valued functions on S will be denoted by C(S). This set equipped with

the pointwise linear operations (addition and multiplication by complex

numbers) and with the topology of pointwise convergence (the Thychonoff–

topology) bears the structure of a locally convex topological vector space.
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For any function f on S having values in a set H the translate of f by

the element y in S is the function Tyf : S → H defined by the equation

Tyf(x) = f(x+ y)

for each x in S. A set of functions on S is called translation invariant if

all translates of each function in the set belong to the set, too. Clearly

any intersection of translation invariant sets is translation invariant. For a

given set F of complex valued functions the intersection of all translation

invariant sets including F is called the translation invariant set generated

by F . For a given set F of complex valued functions on S the intersection

of all translation invariant subspaces of C(S) including F is called the

translation invariant subspace generated by F . Finally, for a given set F of

complex valued functions on S the intersection of all translation invariant

closed subspaces of C(S) including F is called the variety generated by

F . This is obviously a translation invariant closed subspace of C(S), the

smallest one of these properties, which includes F . In general, a variety

on S is a closed translation invariant linear subspace of C(S). If F consists

of a single function, say F = {f}, then the variety generated by F is

called the variety generated by f . A nonzero variety is called proper. The

statement that ”the complex valued function g on S belongs to the variety

generated by f” means that g is the pointwise limit of a net of functions,

each of them being a linear combination of translates of f . Functions in

the variety generated by f are exactly the ones which can be approximated

in the sense of pointwise convergence by linear combinations of translates

of f .

We remark that later we shall use the term ”variety” with a different

meaning in a different context.

The dual of C(S) can be identified with the space of all finitely sup-

ported complex Radon measures on G equipped with the weak*-topology

and it is denoted by Mc(S). The pairing between C(S) and Mc(S) is

given by

〈f, µ〉 =

∫
f(x) dµ(x)

for each f in C(S) and µ in Mc(S). The convolution between C(S) and
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Mc(S), further between Mc(S) and Mc(S) is defined in the usual way

(see e.g. [1]).

For each variety in C(S) the set of all elements in Mc(S) which are

zero on the elements of the variety is called the annihilator of the variety

and for any closed ideal inMc(S) the set of all elements in C(S) on which

every element of the ideal is zero is called the annihilator of the ideal. It

is easy to see (see e.g. [5]) that the relationship between varieties in C(S)

and closed ideals inMc(S) is the following : the annihilator of any variety

in C(S) is a closed ideal inMc(S), which is proper if and only if the variety

is proper. Conversely, the annihilator of any closed ideal in Mc(S) is a

variety in C(S), which is proper if and only if the ideal is proper. Also,

the annihilator of the annihilator is the original proper variety or proper

closed ideal, respectively.

The basic building blocks of spectral synthesis are the additive and

exponential functions, as well as exponential monomials and exponential

polynomials. Additive functions on S are the homomorphisms of S into

the additive group of complex numbers. Polynomials on S are obtained

by substituting additive functions into complex polynomials in several

variables. Hence the general form of a polynomial on S is the follow-

ing: x 7→ P
(
a1(x), a2(x), . . . , an(x)

)
, where P is a complex polynomial

in n variables and a1, a2, . . . , an are additive functions on S. Exponential

functions on S are the non-identically zero homomorphisms of S into the

multiplicative semigroup of complex numbers. If S is a group, then expo-

nential functions cannot take the zero value. An exponential monomial on

S is the product of a polynomial and an exponential function and linear

combinations of exponential monomials are called exponential polynomials.

The basic question of spectral analysis is about the existence of an

exponential function in a given proper variety. In the affirmative case we

say that spectral analysis holds for the given variety, and if spectral anal-

ysis holds for each variety then we say that spectral analysis holds in the

semigroup. The basic problem of spectral synthesis is if the exponential

monomials in a given variety span a dense subvariety. In the affirma-

tive case we say that spectral synthesis holds for the given variety, and if
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spectral synthesis holds for each variety then we say that spectral synthe-

sis holds in the semigroup. For more about spectral analysis and spectral

synthesis see e.g. [5] and the references in it. In this paper we will consider

the special cases S = Zn and S = Nn only.

Let n be a fixed positive integer. For each z = (z1, z2, . . . , zn) in

Cn and for each multi-index α = (α1, α2, . . . , αn) in Nn we will use the

notation zα = zα1
1 zα2

2 . . . zαn
n and α! = α1!α2! . . . αn!. If P is any complex

polynomial in n variables, that is, any element of C[z] = C[z1, z2, . . . , zn],

the ring of all complex polynomials in n variables, then the notation for the

differential operator P (∂) = P (∂1, ∂2, . . . , ∂n) has the obvious meaning.

Using the simple ideas similar to those in the proofs of Theorem 6.10.

and 6.11. in [5], p. 57. we have that any complex polynomial p on Zn or

on Nn is actually an ordinary complex polynomial in n variables and any

exponential function m on Zn or on Nn has the form

m(x1, x2, . . . , xn) = m1(x1)m2(x2) . . .mn(xn)

for all x1, x2, . . . , xn in Z or N with some exponentials of Z or N
(i = 1, 2, . . . , n). However, in contrast to the case of Z, on N we have a

special exponential m0, which is 1 for x = 0 and is 0 for x 6= 0. We shall

use the notation m0(x) = 0x for this exponential, which is correct if we

agree on 00 = 1. This means that the exponentials of Nn have the form

m(x1, x2, . . . , xn) = λx11 λ
x2
2 . . . λxnn

for each x1, x2, . . . , xn in N with arbitrary complex numbers λ1, λ2, . . . , λn.

Hence the set of all exponentials of Nn can be identified with Cn. We shall

use the notation λx for the product λx11 λ
x2
2 . . . λxnn if λ = (λ1, λ2, . . . , λn)

and x = (x1, x2, . . . , xn). For any finitely supported measure µ inMc(Nn)

we will use its Fourier– Laplace– transform which is defined by

µ̂(λ) =

∫
Nn

λx dµ(x)

for each λ in Cn. This is a complex polynomial in n variables. Obviously

any complex polynomial in n variables is the Fourier– Laplace– transform of

some finitely supported measure on Nn, hence the ring (actually algebra)

of all Fourier– Laplace– transforms of finitely supported measures on Nn
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can be identified with the ring C[z1, z2, . . . , zn]. Basically, the Fourier–

Laplace– transformation µ 7→ µ̂ identifies Mc(Nn) with the polynomial

ring C[z1, z2, . . . , zn]. The exponential corresponding to λ belongs to a

variety if and only if λ is a common root of the polynomials corresponding

to the annihilator ideal of the variety. By Hilbert’s Nullstellensatz the

polynomials in any proper ideal in C[z1, z2, . . . , zn] have a common root

(see e.g. [6]), thus we have the following result.

Theorem 1. Spectral analysis holds in Nn.

It turns out that spectral synthesis also holds in Nn. To verify this

statement one needs the famous Lasker– Noether– theorem on primary de-

composition (see [6]), which states that in C[z1, z2, . . . , zn] each proper

ideal is the intersection of finitely many primary ideals. Using this theo-

rem, a slight modification of the proof of Lefranc’s theorem in [2] gives the

following result.

Theorem 2. Spectral synthesis holds in Nn.

2. Spectral synthesis and polynomial ideals

Characterization of polynomial ideals in several variables is the content

of the Ehrenpreis–Palamodov theorem (see [4], Theorem 10.12., p. 141.).

One of its consequences is the following theorem (see [4], Theorem 10.13.,

p. 142.).

Theorem 3. Given any primary ideal I in the ring of complex poly-

nomials in n variables there exist differential operators with polynomial

coefficients

Ai(x, ∂) =
∑
j

pij(x1, x2, . . . , xn)∂j11 ∂
j2
2 . . . ∂jnn

for i = 1, 2, . . . , r with the following property: a polynomial f lies in the

ideal I if and only if the result of applying Ai(x, ∂) to f vanishes on the

(irreducible) variety of I for i = 1, 2, . . . , r.
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We recall that the variety of a polynomial ideal is the set of all com-

mon zeros of the polynomials in the ideal. The differential operators

A1(x, ∂), A2(x, ∂), . . . , Ar(x, ∂) are called Noetherian operators for the pri-

mary ideal I. An algorithm for computing Noetherian operators for a

given primary ideal is given in [3]. Here we present another approach to

this problem which is based on spectral synthesis on Nn and we present a

simpler method for finding Noetherian operators.

We have seen in the previous section that the ring of complex polyno-

mials C[z1, z2, . . . , zn] can be identified with Mc(Nn), the dual of C(Nn),

which is the space of all complex valued functions on Nn equipped

with the topology of pointwise convergence. The weak*-topology on

Mc(Nn) is identical with the topology on C[z1, z2, . . . , zn] corresponding to

coefficient-wise convergence. Now we describe the identification between

C[z1, z2, . . . , zn] and Mc(Nn) in more details.

Let p be a complex polynomial in C[z1, z2, . . . , zn]. Writing z for the

vector (z1, z2, . . . , zn) the polynomial p can be written in the form

p(z) =
∑
α∈Nn

1

α!
∂αp(0)zα

for all z in Cn, where α! = α1!α2! . . . αn!. Then the linear functional, or

finitely supported measure µp, corresponding to p effects on a function f

in C(Nn) in the following way :

< µp, f >=
∑
α∈Nn

1

α!
∂αp(0)f(α) .

Obviously, the convolution of µp and µr corresponds to p · r. We observe

that

µ̂p(λ) =< µp(x), λx >=
∑
α∈Nn

1

α!
∂αp(0)λx = p(λ),

hence the Fourier– Laplace– transform of µp can be identified with p. This

means that we can simply write p for µp.

Theorem 4. Let I be a primary ideal in the polynomial ring

C[z1, z2, . . . , zn]. Then there exists a nonempty set P of linear differential

operators with polynomial coefficients such that a polynomial p belongs to
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I if and only if

P (ξ, ∂)p(ξ) = 0 (1)

holds for each ξ in the variety of I and for each P in P.

(This means that the differential operators in P have the form as it was

given in Theorem 3.)

Proof. Let p be a polynomial in C[z1, z2, . . . , zn]. We have

p(λ) =
∑
α∈Nn

1

α!
∂αp(0)λα ,

hence

∂βp(λ) =
∑
α∈Nn

1

α!
∂αp(0)[α]βλα−β,

where [α]β denotes the product [α1]
β1 [α2]

β2 . . . [αn]βn with the usual nota-

tion [αi]
βi = αi(αi − 1) . . . (αi − βi + 1) for i = 1, 2, . . . , n. It follows

λβ∂βp(λ) =
∑
α∈Nn

1

α!
∂αp(0)[α]βλα .

We consider an exponential monomial ϕ : Nn → C having the general form

ϕ(α) = P (α)λα

with some complex polynomial P in n variables and λ in Cn. The polyno-

mial P has a unique representation in the form

P (α) =
∑
β∈Nn

cβ[α]β ,

which implies ∑
β∈Nn

cβλ
β∂βp(λ) =

∑
α∈Nn

1

α!
∂αp(0)P (α)λα .

Suppose that µp annihilates ϕ, that is < µp, ϕ >= 0. This means

< µp, ϕ >=
∑
α∈Nn

1

α!
∂αp(0)P (α)ξα = 0 ,
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or ∑
β∈Nn

cβξ
β∂βp(ξ) = 0 . (2)

Suppose now that the primary ideal I is given and V is its irreducible

variety, which is nonempty by Hilbert’s Nullstellensatz (that is, by spectral

analysis on Nn.) By Theorem 2 the linear hull of all exponential monomials

of the form ϕ is dense in the annihilator of I. This means that p belongs

to the closure of I if and only if p satisfies a system of equations of the

form (2), corresponding to the points ξ in the variety of I. To complete

our proof it is enough to show that in the given topology on Mc(Nn) any

ideal is closed. It is obvious that the given topology is exactly the topol-

ogy of coefficient-wise convergence of polynomials. On the other hand,

if I is any proper ideal, then it is finitely generated, by Hilbert’s Basis

Theorem (see e.g. [6]). Let f1, f2, . . . , fN be a Groebner–basis of I with

respect to any fixed monomial ordering and let R denote the operator on

C[z1, z2, . . . , zn] mapping each polynomial to its remainder with respect to

the given Groebner–basis. Then R is linear and its kernel is exactly I. On

the other hand, analyzing the division algorithm, it is clear that R is con-

tinuous with respect to the topology of coefficient-wise convergence: the

coefficients of the remainder are continuous functions of the coefficients of

the original polynomial. It follows that the kernel of R is closed and our

theorem is proved. �

Theorem 5. Let I be a proper ideal in the polynomial ring

C[z1, z2, . . . , zn]. Then to any irreducible variety Vi of the associated primes

corresponding to the primary decomposition of I there exists a nonempty

set Pi of linear differential operators with polynomial coefficients such that

a polynomial p belongs to I if and only if

P (ξ, ∂)p(ξ) = 0 (3)

holds for each ξ in Vi and for each P in Pi.

Proof. The statement follows from the Lasker–Noether Primary De-

composition Theorem (see e.g. [6]), which says that any proper ideal in

the polynomial ring is the intersection of finitely many primary ideals. �
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In the case n = 1 any proper ideal in C[z] is a principal ideal, hence

its variety V is a nonempty finite set :

V = {ξ1, ξ2, . . . , ξk},

where the complex numbers ξ1, ξ2, . . . , ξk are the different roots of the

generating polynomial of I with positive multiplicities m1,m2, . . . ,mk.

These numbers, as singletons represent the varieties of the associated

primes. In this case Pξj can be taken as the set of differential opera-

tors {1, D,D2, . . . , Dmj−1} for j = 1, 2, . . . , k, where D is the operator of

differentiation. The condition (3) means that a polynomial p belongs to

I if and only if its derivatives p(i) for i = 0, 1, . . . ,mj − 1 vanish at ξj for

j = 1, 2, . . . , k.

3. Noetherian operators of polynomial ideals

Now we describe the sets of polynomials P for a given proper ideal I

in C[z1, z2, . . . , zn]. We need the following simple result.

Theorem 6. Let P, f, g be given polynomials in C[z1, z2, . . . , zn].

Then we have

P (∂)(f · g) =
∑
α∈Nn

1

α!
∂αf · [(∂αP )(∂)]g . (4)

Proof. The statement is obvious if P is a monomial of the form

P (z) = zβ by Leibniz’s Rule :

∂β(f · g) =
∑
α∈Nn

β!

α!(β − α)!
∂αf · ∂β−αg.

Hence the general statement follows. �

Let ξ be a fixed point in the variety V of I and let Pξ(I) be the set of

all polynomials P in C[z1, z2, . . . , zn] for which

P (∂)f(ξ) = 0
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holds for each f in I. Obviously Pξ(I) is a linear space of polynomials. By

the following theorem it is also closed under differentiation : if P belongs

to Pξ(I) then ∂αP belongs to Pξ(I) for any multi-index α.

Theorem 7. Let I be a proper ideal in C[z1, z2, . . . , zn] and let ξ be

a common zero of all polynomials in I. Then the set of all polynomials P

in C[z1, z2, . . . , zn] which satisfy

P (∂)f(ξ) = 0 (5)

for all f in I is a nonzero translation invariant linear space closed under

differentiation. Conversely, if P is any nonzero linear space of polynomials,

which is closed under differentiation then the set of all polynomials f

satisfying (5) with some fixed ξ in Cn is a proper ideal.

Proof. Suppose first that the polynomial P satisfies (5) for any f

in I. Fix f in I, and let g(x) = x1, then g · f is in I and we have by

Theorem 6

0 = P (∂)[g · f ](ξ) =
∑
α

1

α!
∂αg(ξ)

[
∂αP

]
f(ξ) =

= ξ · [P (∂)f ](ξ) + [∂1P (∂)]f(ξ) ,

which implies that ∂1P satisfies (5) for any f in I. By iteration we obtain

that the given linear space of polynomials is closed under differentiation.

It is nonzero, because by Hilbert’s Nullstellensatz, it includes all constant

polynomials. On the other hand, using the Newton Interpolation Formula

and the Taylor Formula we see that a linear space of polynomials is closed

under differentiation if and only if it is translation invariant : derivatives

are linear combinations of translates and translates are linear combinations

of derivatives.

Conversely, suppose now that I is the set of all polynomials f satis-

fying (5) with some fixed ξ in Cn for any P from a nonzero linear space

of polynomials P, which is closed under differentiation. As P includes all

constant polynomials, hence I is proper. Clearly, I is closed under addi-

tion. On the other hand, if f is in I and g is an arbitrary polynomial, then
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by Theorem 6 we have for any P in P

P (∂)(g · f)(ξ) =
∑
α

1

α
∂αg(ξ)[∂αP (∂)]f(ξ) = 0 ,

as P is closed under differentiation. Hence g ·f is in I and I is an ideal. �

The following theorem gives a complete description of Pξ(I).

Theorem 8. Let I be a proper ideal in C[z1, z2, . . . , zn] and let ξ be

a point in the variety V of I. Then the polynomial P belongs to Pξ(I) if

and only if ∑
α∈Nn

1

α!
∂αf(ξ)∂αP (z) = 0 (6)

holds for each f in I and for all z in Cn.

Proof. Obviously we may suppose that I 6= {0}. First suppose that

P satisfies (6) for each f in I and for each z in Cn. For any multi-index α

and for any z in Cn we let qα(z) = (z − ξ)α. Then it follows

[P (∂)qα](ξ) = ∂αP (0) , (7)

hence

P (∂)f(ξ) = P (∂)
[ ∑
α∈Nn

1

α!
∂αf(ξ)qα

]
(ξ) =

=
∑
α∈Nn

1

α!
∂αf(ξ)[P (∂)qα](ξ) =

∑
α∈Nn

1

α!
∂αf(ξ)∂αP (0) = 0 ,

for any f in I by (6). This means that P is in Pξ(I).

Conversely, suppose that P is in Pξ(I). Then we have as above

0 = P (∂)f(ξ) = P (∂)
[ ∑
α∈Nn

1

α!
∂αf(ξ)qα

]
(ξ) =

=
∑
α∈Nn

1

α!
∂αf(ξ)[P (∂)qα](ξ) =

∑
α∈Nn

1

α!
∂αf(ξ)∂αP (0) .

As Pξ(I) is translation invariant, this latter equation holds for any trans-

late of P . Replacing P by w 7→ P (w + z) our statement follows. �
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By Theorem 4 and Theorem 5 Noetherian operators for a given proper

ideal I (which are not unique) can be found in the following way. Suppose

that f1, f2, . . . , fN is a Groebner–basis for I and the irreducible varieties

of the associated primes in the primary decomposition of I are the sets

V1, V2, . . . , Vr in Cn. We consider the partial differential equations (6)

with fi instead of f for i = 1, 2, . . . , N and with ξ in Vj for j = 1, 2, . . . , r.

The polynomial solutions P = P (ξ, z) of this system depend polynomially

on ξ, as it is shown by (2). These polynomial solutions form the differen-

tiation invariant linear spaces of polynomials for each Vj , independently.

Then the linear differential operators with polynomial coefficients P (ξ, ∂)

form a set of Noetherian operators. The way, how to choose a finite num-

ber of them depends on the special form of the corresponding systems of

partial differential equations. If each of them has a finite dimensional so-

lution space, then we simply take bases of them, and since their number r

is finite, the problem is solved. If any of them has an infinite dimensional

solution space, then in the general polynomial solution arbitrary polyno-

mials appear. More exactly, there are a finite number of polynomials such

that any polynomial of them is a solution, too. In this case it turns out,

that instead of ”any polynomial” we can take a polynomial of degree large

enough to obtain a finite number of Noetherian operators.

Here we present a simple example to illustrate the method. The ex-

ample is taken from [4].

Let I be the ideal generated by the polynomials xz − y, y2 and z2.

Then I is primary to the ideal generated by y and z. The variety of I is

obtained by solving the system xz−y = 0, y2 = 0, z2 = 0 and the solution

set is the x-axis. We write V = {(ξ, 0, 0)| ξ ∈ C}. For any (ξ, 0, 0) in V we

need the Taylor–series of the three generating polynomials at (ξ, 0, 0), by

(6). We have

xz − y = (x− ξ)z + ξz − y, y2 = y2, z2 = z2 ,

and hence, by replacing x − ξ by ∂1, y by ∂2 and z by ∂3 the system of

partial differential equations (6) for the Noetherian operators at (ξ, 0, 0)

takes the form

(∂1∂3 + ξ∂3 − ∂2)P (x, y, z) = 0 ,

∂22P (x, y, z) = 0 ,
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∂23P (x, y, z) = 0 .

By a straightforward computation we have that P has the form

P (x, y, z) = A(x) +B(x)(ξy + z) +B′(x)y

with arbitrary polynomials A,B. This means, that any Noetherian oper-

ator for I has the form

P (∂1, ∂2, ∂3) = A(∂1) +B(∂1)(ξ∂2 + ∂3) +B′(∂1)∂2 (8)

with arbitrary polynomials A,B. However, it is obvious that if the two

operators 1 and ξ∂2 + ∂3 annihilate a polynomial f at (ξ, 0, 0), then so

does any operator of the form (8). Hence we can take these two operators

as Noetherian operators for I, which means that a polynomial f belongs

to I if and only if it satisfies

f(x, 0, 0) = 0, x∂2f(x, 0, 0) + ∂3f(x, 0, 0) = 0

for any complex number x.
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